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† Departmento de F́ısica, Universidad Nacional de La Plata, CC 67, 1900 La Plata, Argentina
‡ Department of Physics, Hangzhou University, Hangzhou, 310028, People’s Republic of China

Received 24 February 1998, in final form 24 June 1998

Abstract. We study, through path-integral methods, an extension of the massive Thirring model
in which the interaction between currents is non-local. By examining the mass expansion of the
partition function we show that this non-local massive Thirring model is equivalent to a certain
non-local extension of the sine-Gordon theory. Thus, we establish a non-local generalization
of the well known Coleman’s equivalence. We also discuss some possible applications of this
result in the context of one-dimensional strongly correlated systems and finite-size quantum field
theories.

1. Introduction

Bosonization, i.e. the equivalence between fermionic and bosonic Green functions in 1+ 1
dimensions, has a long history [1], that could be traced back to the work of Bloch [2] on
the energy loss of charged particles travelling through a metal. In more recent years, the
well known Coleman’s equivalence proof between the massive Thirring and sine-Gordon
theories [3] and Polyakov and Wiegman and Witten’s non-Abelian bosonization [4], helped
us to convert this procedure into a standard and powerful tool for the understanding of
quantum field theories (QFTs). All these achievements were realized in the context oflocal
QFTs.

Recently, the bosonization procedure in its path-integral version [5] was applied, for
the first time, to anon-local QFT, namely, a Thirring model with massless fermions and a
non-local (and non-covariant) interaction between fermionic currents [6]. The study of such
a model is relevant, not only from a purely field-theoretical point of view but also because of
its connection with the physics of strongly correlated systems in one spatial dimension (1d).
Indeed, this model describes an ensemble of non-relativistic particles coupled through a
two-body forward-scattering potential and displays the so-called Luttinger-liquid behaviour
[7] that could play a role in real 1d semiconductors (see for instance [8]).

In this paper we undertake the path-integral bosonization of the non-local Thirring model
(NLT) with a relativistic fermion mass term included in the action. Using a functional
decoupling technique to treat the non-locality [6], and performing a perturbative expansion
in the mass parameter, we find that the NLT is equivalent to a purely bosonic action which
is a simple non-local extension of the sine-Gordon model. Thus, our main result can be
considered as a generalization of Coleman’s equivalence to the case in which the usual
Thirring interaction is point-split through bilocal potentials. In the language of many-body,
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non-relativistic systems, the relativistic mass term can be shown to represent not an actual
mass, but the introduction of backward-scattering effects [9]. Therefore, our result provides
an alternative route to explore the dynamics of collective modes in 1d strongly correlated
systems.

This paper is organized as follows. In section 2 we present the model and write
the partition function in terms of a massive fermionic determinant. Then we perform a
perturbative expansion in the mass parameter and evaluate every free (massless) vacuum
expectation value (VEV). This allows us to obtain an explicit expression for the partition
function of the massive NLT. In section 3 we introduce a modified non-local sine-Gordon
model (NLSG) with an additional non-local term. We then consider the corresponding
partition function, make an expansion in the cosine term and compute the free VEV’s, for
each term in the series. Finally we compare both the fermionic and bosonic expansions
term by term and find that they are equal if a certain relationship between NLT and NLSG
potentials is satisfied. We end section 3 by briefly showing how our approach can be used to
study the 1d electronic liquid with back-scattering. We also comment on the possibility of
exploiting this work in order to shed some light onto the validity of Coleman’s equivalence
at finite volume. In the final section we summarize and stress the main aspects of this work.

2. Partition function for the massive non-local Thirring model

Let us consider the Euclidean Lagrangian density of the massive Thirring model with a
non-local interaction between fermionic currents

L = i9̄/∂9 + 1
2g

2
∫

d2y Jµ(x)V(µ)(x, y)Jµ(y)−m9̄9 (2.1)

where

Jµ(x) = 9̄(x)γµ9(x) (2.2)

and

V(µ)(x, y) = V(µ)(|x − y|) (2.3)

is an arbitrary function of|x − y|. We shall useγ matrices defined as

γ0 =
(

0 1
1 0

)
γ1 =

(
0 i
−i 0

)
γ5 = iγ0γ1 =

(
1 0
0 −1

)
(2.4)

[γµ, γν ] = 2δµν γµγ5 = iεµνγν. (2.5)

The partition function of the model is

Z = N
∫

D9̄ D9 e−
∫

d2x L. (2.6)

By using the following representation of the functional delta,

δ(Cµ) =
∫

DÃµ exp

(
−
∫

d2x ÃµCµ

)
(2.7)

we can writeZ as

Z = N
∫

D9̄ D9 DÃµ DB̃µ

× exp

{
−
∫

d2x

[
9̄(i/∂ −m)9 + ÃµB̃µ + g√

2
(ÃµJµ + B̃µKµ)

]}
(2.8)
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where

Kµ(x) =
∫

d2y V(µ)(x, y)Jµ(y). (2.9)

Please note that no sum over repeated indices is implied when a subindex(µ) is involved.
If we define

B̄µ(x) =
∫

d2y V(µ)(y, x)B̃µ(y) (2.10)

B̃µ(x) =
∫

d2y b(µ)(y, x)B̄µ(y) (2.11)

with b(µ)(y, x) satisfying∫
d2y b(µ)(y, x)V(µ)(z, y) = δ2(x − z) (2.12)

and change auxiliary variables in the form

Aµ = 1√
2
(Ãµ + B̄µ) (2.13)

Bµ = 1√
2
(Ãµ − B̄µ) (2.14)

we obtain

Z = N
∫

DAµ DBµ det(i/∂ + g/A−m)e−S(A,B) (2.15)

where

S(A,B) = 1
2

∫
d2x

∫
d2y b(µ)(x, y)[Aµ(x)Aµ(y)− Bµ(x)Bµ(y)]. (2.16)

The Jacobian associated with the change(Ã, B̃)→ (A,B) is field independent and can be
absorbed in the normalization constantN .

We have been able to expressZ in terms of a fermionic determinant. This fact
will enable us to apply the machinery of the path-integral approach to bosonization,
first developed in the context of local theories, to the present non-local case. However,
before we do this some remarks are in order. First, it is worth noting that, as a
consequence of the change of bosonic variables (equations (2.13) and (2.14)), the effect
of the non-local interaction has been completely transferred to the purely bosonic piece of
the action,S[A,B]. On the other hand we see that theB-field is completely decoupled
from both theA-field and the fermion field. Keeping this in mind, it is instructive to
try to recover the partition function corresponding to the usual covariant Thirring model
(b(0)(y, x) = b(1)(x, y) = δ2(x−y)), starting from (2.15). In doing so one readily discovers
thatBµ describes a negative-metric state whose contribution must be factorized and absorbed
in N in order to get a sensible answer forZ. This procedure parallels, in the path-integral
framework, the operator approach of Klaiber [10], which precludes the use of an indefinite-
metric Hilbert space. If one follows the same prescription in the present non-local case, the
result is:

Z = N
∫

DAµ det(i/∂ + g/A−m)e−S[A] (2.17)

with

S(A) = 1
2

∫
d2x d2y b(µ)(x, y)Aµ(x)Aµ(y). (2.18)
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As it is known, the massive determinant in (2.17) has not been exactly solved yet. The
usual way of dealing with it consists of performing a chiral transformation in the fermionic
path-integral variables and then making an expansion withm as its perturbative parameter.
(This procedure was employed for the local case in [5].) Since we were able to write
the partition function in such a way that non-local terms are not present in the fermionic
determinant, we can follow exactly the same strategy as in the local case. To this aim let
us first express the vector field in terms of two new fields8 andη as

Aµ(x) = −εµν∂ν8(x)+ ∂µη(x) (2.19)

which can be considered as a change of bosonic variables with trivial (field-independent)
Jacobian. We also make the change

9(x) = exp[−g(γ58(x)+ iη(x))]χ(x) (2.20)

9̄(x) = χ̄(x) exp[−g(γ58(x)− iη(x))]. (2.21)

The Jacobian corresponding to the above transformations is non-trivial due to the so-called
chiral anomaly. Its detailed evaluation has been given several times in the literature [11].
The result is

JF = exp

[
g2

2π

∫
d2x 8(x)�8(x)

]
. (2.22)

We then get

Z = N
∫

Dχ̄ Dχ D8Dηe−Seff (2.23)

where

Seff = S0F + S0B−m
∫

d2x χ̄e−2gγ58χ (2.24)

S0F =
∫

d2x (χ̄ i/∂χ) (2.25)

and

S0NLB = g2

2π

∫
d2x (∂µ8)

2+ 1

2

∫
d2x d2y εµλεµσ b(µ)(y, x)∂λ8(x)∂σ8(y)

+ 1
2

∫
d2x d2y b(µ)(y, x)∂µη(x)∂µη(y)

−
∫

d2x d2y [b(0)(y, x)∂0η(x)∂18(y)− b(1)(y, x)∂1η(x)∂08(y)]. (2.26)

Note that for

∂x1∂
y

0b0(x, y) = ∂x0∂y1b1(x, y) (2.27)

the last term ofS0NLB vanishes, and in this caseη(x) decouples fromχ̄ , χ and8. In the
general caseS0NLB describes a system of two bosonic fields coupled by distance-dependent
coefficients.

Exactly as one does in the local case, the partition function for the massive NLT can
be formally written as a mass expansion:

Z =
∞∑
n=0

(m)n

n!

〈 n∏
j=1

∫
d2xj χ̄(xj )e

−2gγ58(xj )χ(xj )

〉
0

(2.28)
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where the〈 〉0 means VEV in the theory of free massless fermions and non-local bosons.
Using the identity

χ̄(xj )e
−2gγ58(xj )χ(xj ) = e−2g8χ̄

1+ γ5

2
χ + e2g8χ̄

1− γ5

2
χ (2.29)

equation (2.28) can be written as

Z =
∞∑
k=0

(m)2k

k!2

∫ k∏
i=1

d2xi d2yi

〈
exp

[
2g
∑
i

(8(xi)−8(yi))
]〉

0B

×
〈 k∏
i=1

χ̄(xi)
1+ γ5

2
χ(xi)χ̄(yi)

1− γ5

2
χ(yi)

〉
0F

. (2.30)

Each fermionic part can be readily computed by writing

χ̄
1+ γ5

2
χ = χ̄1χ1

χ̄
1− γ5

2
χ = χ̄2χ2

(2.31)

whereχ = (
χ1

χ2

)
, χ̄ = (χ̄1, χ̄2), and using Wick’s theorem with the usual free fermion

propagator.
In view of the bosonic (non-local) factors, they are more easily handled in momentum

space. The corresponding Fourier transformed action acquires the following more compact
form:

S0B = 1

(2π)2

∫
d2p {8̂(p)8̂(−p)A(p)+ η̂(p)η̂(−p)B(p)− 8̂(p)η̂(−p)C(p)} (2.32)

where

A(p) = g2

2π
p2+ 1

2
[b̂(0)(p)p

2
1 + b̂(1)(p)p2

0] (2.33)

B(p) = 1
2[b̂(0)(p)p

2
0 + b̂(1)(p)p2

1] (2.34)

C(p) = [b̂(0)(p)− b̂(1)(p)]p0p1 (2.35)

p2 = p2
0 + p2

1, and8̂, η̂ and b̂(µ) are the Fourier transforms of8, η andb(µ) respectively.
One then has〈

exp

[
2g
∑
i

(8(xi)−8(yi))
]〉

0B

=
∫

D8̂(p)Dη̂(p) e−S0B · eg

π

∑
i

∫
d2p8(p)(eipxi−eipyi )∫

D8̂(p)Dη̂(p)e−S0B
.

(2.36)

This VEV can be computed by translating the quantum fields8̂(p) and η̂(p),

8̂(p) = φ̂(p)+ E(p)
η̂(p) = ρ̂(p)+ F(p) (2.37)

where φ̂ and ρ̂ are the new quantum fields, whereasE(p) and F(p) are two classical
functions satisfying

E(−p) = −4gB(p)

1(p)
D(p, xi, yi)

F (−p) = −2gC(p)

1(p)
D(p, xi, yi)

(2.38)
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with

1 = C2(p)− 4A(p)B(p) (2.39)

and

D(p, xi, yi) =
∑
i

(eipxi − eipyi ). (2.40)

We then get〈
exp

[
2g
∑
i

(8(xi)−8(yi))
]〉

0B

= exp

{
−
( g
π

)2
∫

d2p
B(p)

1(p)
D(p, xi, yi)D(−p, xi, yi)

}
. (2.41)

Combining this result with the Fourier transformed fermionic factors [12], we find

Z =
∞∑
k=0

(m)2k

(k!)2

∫ k∏
i=1

d2xi d2yi

× exp

{
−
∫

d2p

(2π)2

[
2π

p2
− 2πg2(b̂(0)p

2
0 + b̂(1)p2

1)

g2(b̂(0)p
2
0 + b̂(1)p2

1)p
2+ πb̂(0)b̂(1)p4

]
×D(p, xi, yi)D(−p, xi, yi)

}
. (2.42)

Thus, we have been able to obtain an explicit expansion for the partition function of a
massive Thirring model with arbitrary (symmetric) bilocal potentials coupling the fermionic
currents. This result will be used in the next section in order to establish, by comparison,
its equivalence to a sine-Gordon-like model.

3. Connection with a non-local sine-Gordon model

Let us now consider the Lagrangian density of the NLSG given by

LNLSG = 1

2
(∂µφ(x))

2+ 1

2

∫
d2y ∂µφ(x)d(µ)(x − y)∂µφ(y)− α0

β2
cosβφ (3.1)

whered(µ)(x−y) is an arbitrary potential function of|x−y|. The partition function of this
model reads

ZNLSG =
∫

Dφ exp

[
−
∫

d2x LNLSG

]
. (3.2)

Performing a perturbative expansion inα0, we obtain

ZNLSG =
∞∑
k=0

[
1

k!

]2(
α0

β2

)2k ∫ k∏
i=1

d2xi d2yi 〈eiβ
∑

i (φ(xi )−φ(yi ))〉0 (3.3)

where〈 〉0 means the VEV with respect to the ‘free’ action defined by the two first terms in
the right-hand side of equation (3.1). Since we are again led to the computation of VEVs of
vertex operators, from now on the technical aspects of the calculation are, of course, very
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similar to those depicted in the previous section. For this reason we shall omit the details
here. The result is

ZNLSG =
∞∑
k=0

[
1

k!

]2(
α0

β2

)2k ∫ k∏
i=1

d2xi d2yi

× exp

[
− β

2

4

∫
d2p

(2π)2
D(p, xi, yi)D(−p, xi, yi)

1
2p

2+ 1
2(d̂(0)(p)p

2
0 + d̂(1)(p)p2

1)

]
. (3.4)

By comparing equation (2.42) with equation (3.4), we find that both expansions are
identical if the following equations hold:

m = α0

β2
(3.5)

and

1
g2

π
(
p2

0

b̂(1)
+ p2

1

b̂(0)
)+ p2

= β2

4π(p2+ d̂(0)p2
0 + d̂(1)p2

1)
(3.6)

where, for the sake of clarity, we have omitted thep-dependence of the potentials.
Therefore, we have obtained a formal equivalence between the partition functions of

the massive NLT and NLSG models. This is the main result of this paper. Let us stress that
in the present path-integral framework we cannot establish a direct identification between
fermionic and bosonic variables as it was done, for instance, in the fermionization of the
2d Ising model [13] or in Mandelstam’s operational bosonization [14]. Thus, our result
should be rigorously understood as an equivalence between Green functions. However, an
operational analysis of the NLT model following the lines of [14] should lead to a nonlinear
relationship between fermionic and bosonic fields, similar to the one obtained in the local
case.

In order to check the validity of equation (3.6), let us specialize it to the covariant case,

b̂(0)(p) = b̂(1)(p) = b̂(p)
d̂(0)(p) = d̂(1)(p) = d̂(p)

(3.7)

which yields

1
g2

πb̂(p)
+ 1
= β2

4π(1+ d̂(p)) . (3.8)

In particular, when̂b(p) = 1 andd̂(p) = 0, our massive NLT model returns to the usual
massive Thirring model, and the NLSG model becomes the ordinary sine-Gordon model.
Making these replacements in equation (3.8) we get

β2

4π
= 1

1+ g2

π

(3.9)

which is the well known Coleman’s result [3]. Of course, in this particular case one also has
a modified version of the identity (3.5), with bothm andα0 renormalized due to divergencies
coming from the vertex operators VEVs.

It is certainly encouraging to reproduce equation (3.9). However, our more general
formula (3.6) enables us to profit from the bosonization identification in a much wider variety
of situations, and in a very straightforward way. In particular, the non-local version of the
sine-Gordon model can be easily used in the context of 1d strongly correlated fermions. This
type of system has recently attracted much attention, due to striking advances in the material
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sciences that have allowed us to build real ‘quantum wires’ [15]. Much of the theoretical
understanding of these physical systems has come from the study of the Tomonaga–Luttinger
(TL) model [16–18] which, in its simpler version, describes spinless fermions interacting
through their density fluctuations. In [6] it was shown that the TL model is a particular
case of the NLT model considered in the present work, corresponding tob̂(1)→∞ andb̂(0)
associated to the density–density interaction,V (p1) = 1

b̂(0)(p)
. For this many-body system,

adding a relativistic fermion mass is intimately connected to the description of backward-
scattering processes (the so-called Luther–Emery model [9]). Therefore, the NLSG model
could be used to explore the Luther–Emery model. For illustrative purposes we shall
consider here the spinless case, although the extension to the spin-1

2 case can be easily done
within this framework (see [6]). To do this, according to the previous discussion, one has
to take the limitb̂(1)→∞ in (3.6), thus obtaining

1
g2

π
V (p1)p

2
1 + p2

= β2

4π(p2+ d̂(0)p2
0 + d̂(1)p2

1)
. (3.10)

In this context the above equation has to be viewed as an identity that permits us to determine
the potentialsd̂µ necessary to analyse the original fermionic Luther–Emery model in terms
of the bosonic NLSG model. For instance, if we setd̂(0) = 0 andβ2 = 4π , d̂(1) turns out to
be proportional toV . Then equation (3.1) describes the dynamics of the collective modes,
whose spectrum, as it is well known, develops a gap due to back-scattering effects. By
virtue of equation (3.5) one can directly read the value of this gap from (3.1), obtaining
m = α0/4π .

In passing let us mention that the study of the Luther–Emery model in the presence of
impurities could also be undertaken by combining the present scheme with the results of
[19].

We believe that the identification established in this paper might be useful to compute
finite-size corrections in the massive Thirring model. There has been some recent interesting
studies on this subject which found different results for the values of the central charges
of the massive Thirring [20] and sine-Gordon [21] models. One possible explanation for
this disagreement was given in [22], where it was argued, by using perturbed conformal
field theory, that Coleman’s equivalence is spoilt by finite-volume effects. All of these
investigations are restricted to local models. In this context, our approach could be employed
to examine the influence of non-contact interactions on the perturbed conformal properties
of the systems. Since such a computation is expected to be closely related to the ground-
state structure of the theories under consideration, it will be facilitated by recent results on
the vacuum properties of the NLT model [23]. This problem is beyond the scope of this
paper, but will be addressed in the near future.

4. Summary

In this work we have considered an extension of the massive Thirring model in which
the fermionic current–current interaction is mediated by distance-dependent potentials. We
also introduced a simple modification of the sine-Gordon model that consists of adding a
non-local kinetic-like term to the usual bosonic action. By analysing the vacuum-to-vacuum
functionals of each model through perturbative expansions, in complete analogy with the
original procedure followed by Coleman in his well known paper [3], we found that both
series (the mass expansion of the Thirring-like model and the ‘fugacity’ expansion of the
sine-Gordon-like model) are equal provided that a certain relation between the corresponding
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potentials is satisfied. This is our main result (see equation (3.6)). Taking into account the
close connection between the non-local Thirring model and a non-relativistic many-body
system of one-dimensional electrons, we have depicted how to use our result in order to
study the back-scattering problem by means of the non-local sine-Gordon theory proposed
in this paper. We have also stressed the possibility of using our result as an alternative tool
to check the validity of Coleman’s equivalence at finite volume.
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